Task/Subtask IV02.1
CDRL Sequence A014-005
15 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
SWSC Domain Engineering Experience

Contract No. F19628-93-C-0129
Task IV02 — Megaprogramming Transition Support

Prepared for:

Electronic Systems Center L
Air Force Materiel Command, USAF G
Hanscom AFB, MA 01731-2116 el

Prepared by:
Loral Federal Systems

700 North Frederick Avenue
Gaithersburg, MD 20879

19950403 126

Cleared for Public Release, Distribution is Unlimited

Task/Subtask IV02.1
CDRL Sequence A014-005
15 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
SWSC Domain Engineering Experience

Contract No. F19628-93—-C-0129
Task IV02 — Megaprogramming Transition Support

Accesion For
Prepared for: NTIS CRA& %
, . DTIC TAB
Electronic Systems Center Unannounced O
Air Force Materiel Command, USAF | Justification
Hanscom AFB, MA 01731-2116
By
Distribution|
Availability Codes
. Avail andjor
Prepared by: Dist Special
Loral Federal Systems \
700 North Frederick Avenue H'/

Gaithersburg, MD 20879

REPORT DOCUMENTION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruct
maintaining the data needsed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je
VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

Jons, searching exrsting data sources, gathering and
any other aspect of this collection of information,
terson Davis Highway, Suite 1204, Arington,

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE
1/15/95

3. REPORT TYPE AND DATES COVERED
Informal Technical Report

4. TITLE AND SUBTITLE

SWSC Domain Engineering Experience

5. FUNDING NUMBERS

6. AUTHOR(S)

Brian Bulat, Loral Federal Systems - Gaithersburg

F19628-93-C-0129

Gaithersburg, MD

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Loral Federal Systems
700 North Frederick Avenue
20879

8. PERFORMING ORGANIZATION
REPORT NUMBER

A014-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Electronic Systems Center/ENS

Air Force Materiel Command, USAF

5 Eglin Street, Building 1704
Hanscom Air Force Base, MA

01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Cleared for Public Release, Distribution is Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Product Line Software Reuse.

The Space and Warning Systems Center (SWSC) in Colorado Springs maintains and
develops Command and Control Systems for NORAD, USSPACECOM, and AFSPC.
"stovepipe" systems imbedding twenty-four languages and ten millions lines of code
make for a maintenance nightmare and for a fertile ground for Megaprogramming, or
At the SWSC, the SCAI (Space Command and Control
Architectural Infrastructure) project has been instituting Architecture-Based,
Product-Line Software Reuse for the past two years. The SCAI project is the
STARS/Loral/Air Force Megaprogramming Demonstration Project out of ARPA.

This paper presents the lessons learned in developing and using a Domain Architecture,
a Domain Architectrue Framework, and a Domain Engineering Process, while developing
a SCAI Space Surveillance Applicationm.

Twenty-seven

14. SUBJECT TERMS

domain engineering, architecture, reuse, object, class, framework, —mroone
process, megaprogramming, product line

15. NUMBER OF PAGES
52

N/A

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

Preface

This document was developed by the Loral Federal Systems - Gaithersburg, located at 700 North
Frederick Avenue, Gaithersburg, MD 20879. Questions or comments should be directed to Bnan
Bulat at 719-554-6577 (Interncet: bulutb & Ifs loral.com).

This document is approved for release under Distribution “A” of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24).

The contents of this document constitutes technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the
release to third parties whether engaged in performance of a Government contract or subcontract
or otherwise. The Government further disallows any liability for damages incurred as the result of

the dissemination of this information.

Presenter: Brian Bulat

Title: SWSC Domain Engineering Experience
Track: Architecture (7)
Day: Tuesday

Keywords: domain engineering, architecture, reuse, object, class, framework,
process, megaprogramming, product line.

SWSC DOMAIN ENGINEERING EXPERIENCE

This paper describes some of the lessons the Space and Warning Systems
Center (SWSC) Domain Engineering team has learned while working on a
Megaprogramming effort. In order to set the context for the lessons learned, the SWSC
Environment, Domain Architecture, and Domain Architecture Framework are described.
Architecture Framework extends the concept of architecture to include the relationship
of architecture to other domain artifacts (system specifications, code, etc.) and the
processes that support the construction of the architecture and artifacts. Finally, the
lessons learned over the last two years on the Space Command and Control
Architectural Infrastructure Project (SCAI) are presented. The lessons have been
abstracted so that their scope is wider than just the SCAI project.

1.0 MEGAPROGRAMMING

The Software Technology for Adaptable and Reliable Systems (STARS)
program under the Advanced Research Projects Agency (ARPA), has evolved the
concept of Megaprogramming [Trimble94], or Process Driven, Product-Line Software
Reuse supported by an integrated Software Engineering Environment.
Megaprogramming identifies families of applications that share common traits and
characteristics (a product line). Each common trait or abstraction may result in a
common Ada component that can be used to construct multiple applications in the
domain. Megaprogramming requires that software be produced according to defined
processes. These processes are grouped into two lifecycles. A Domain Engineering
Lifecycle, under the aegis of a Domain Engineering Organization, identifies common
components; an Application Engineering Lifecycle uses the common components to
construct specific systems. A Domain Management organization makes the cost
decisions and scheduling decisions related to when common components are to be
constructed and then integrated into individual applications.

1 January 15

2.0 SWSC ENVIRONMENT

The Space and Warning Systems Center (SWSC) in Colorado Springs
maintains and modifies Command and Control Systems for NORAD, USSPACECOM,
and AFSPC. Currently the SWSC is responsible for twenty-seven “stovepipe” systems,
comprising over 10 million lines of code developed in twenty-four different languages
on a variety of hardware platforms. This maintenance nightmare is a fertile environment
for introducing Megaprogramming. At the SWSC, the SCAl (Space Command and
Control Architectural Infrastructure) project has been instituting Megaprogramming for
the past two years. The SCAI project is the STARS/Loral/Air Force Megaprogramming
Demonstration Project out of ARPA.

The SCAI approach (see Figure 1) to the Product-Line Software Reuse aspect of
megaprogramming, is to use a software process called Domain Analysis to create a
Domain Specific Software Architecture, to which all individual systems in the
domain/family are mapped. SCAI interprets the Domain and Application Lifecycles as
being very tightly coupled: All Domain Analysis occurs in the Domain Engineering
Lifecycle, but all component construction occurs in the Application Lifecycle. Because
of this tight coupling, the Software Development Process is referred to as the Domain
Engineering/Application Engineering Process (DE/AE).

SCAI intends to demonstrate that the SWSC version of Megaprogramming will
increase software quality while decreasing the cost of developing and maintaining
families of related SWSC Command and Control systems.

The SCAI project is creating a Space Tracking and Warning Application in the
Space Domain using the SCAI Megaprogramming Technologies. Preliminary results in
the first intermediate delivery of the SCAI System indicate that over 50% of the code in
the system is reused or generated, just including the services layer of the architecture
(explained in following paragraphs). It is presumed that as the scope of the domain is
extended to encompass more than Space Systems, the percentage of generated and
reused code will dramatically increase. Quality results have not yet been reported.

2 January 15

Product Line Software Reuse

Family

Domain £
Specific Automated Process of
Architecture related
systems

Software Engineering Environment

Figure 1. SCAl Megaprogramming

3.0 SCAI| DOMAIN ARCHITECTURE

The SWSC attempted to determine a common architectural strategy for
reengineering SWSC Command and Control Systems for several years prior to the
SCAI project. This effort culminated in the RICC architectural infrastructure approach
[Bristow93]. The so-called “Chip Diagram”, Figure 2, represents the architectural
concept at the start of the SCAI project. This concept had the SWSC C? system areas
(Missile Warning, Space, Weather, Sensor Gateway, Air, and Intelligence) all being
supported by a common infrastructure. The SCAI Project based the SCAI application
on this infrastructure, which is enabled by the RICC tools.

The RICC, Reusable Integrated Command Center, is a set of run-time services
supporting User Interfaces, Data Management, Message Handling, and Networks.
Network services are a subset of system services in Figure 2. The RICC services are
tailored to a particular system via a set of interactive Ada code generators, represented
as Code Generator Tools in Figure 2.

This initial SCAI “chip” architecture was decomposed into a layered Domain
Requirements Model (DRM) and a set of Application Architectural Models (AAM)s. The
current scope of the DRM is the SWSC Space Domain; each AAM is specific to one
system in the domain. The layered DRM is a modified Booch [Booch94] Class Model
while the AAM is a network topology model and a mapping of application tasks to
machines. These models, described below, comprise the SCAI Domain Architecture.

3 January 15

/,w‘;’:}k’g ﬁpace /‘Veather

Sensor / Alr /ﬁtelllgence . Ratlonal Apex
/Gate‘”ay & J . Rational Rose

Message Handling
Services

System
Services

Data Manasgement | User Interface
Services Services

Command & Control Architectural Infrastructure

TAFIM / TRM Compliant COTS SW

COTS HW

Figure 2. Initial C2 Architectural Goal

3.1 DoMAIN REQUIREMENTS MODEL

The “chip model” was abstracted into a three layered object-oriented model
called the Domain Requirements Model (DRM), Figure 3, by adding extra domain-
specific model layers to identify types of reusable components other than the common
service routines, and to further insuiate the domain components from change.

3.1.1 Booch Model Composition

The DRM is a modified Booch [Booch94] Class Model. It contains a Class
Diagram along with Class Templates and Object Scenario Diagrams. A Class Diagram
identifies the static relationships between the classes in the domain, such as "a
groundstation tracks a satellite”, or a “maneuverable satellite is a subclass of satellite”.
Class Templates identify the details. of class definitions: class operations (i.e., calculate
a satellite orbit), class state data (i.e., satellite orbit definition), and class state
transition diagrams (i.e., calculate a satellite orbit if new observations exist) if the class
has complicated behavior. Object Scenario Diagrams depict single paths through the
system, tracing the flow of control, as messages are passed from object to object, from
one system boundary to the other. For instance:

(1) go to the groundstation object to get observations,
(2) pass the observations to the satellite object to calculate the new orbit,
(3) pass the new orbits to the orbit analyst object for viewing,

(4) put the newly calculated orbit in the satellite catalogue.

4 January 15

3.1.2 DRM Service Layer

The RICC Infrastructure Services, identified as the C® Service Layer in Figure 3,
are services which are applicable to the whole C? domain. As new systems are
analyzed and reengineered via the Domain Engineering / Application Engineering
(DE/AE) process, the intention is to identify multiple instances of existing application
services, and generalize them into a new C? Service Layer. These common Services
act as servers to requesters (clients) in the layers above the C? Service Layer

COTS and GOTS products for use in the Service Layer are selected, as much as
possible, so that they are compliant with the DoD TAFIM, Technical Architecture

Framework for Information Management..

3.1.3 DRM Application Layer

Within the set of C? systems for which the SWSC is responsible, the Space
Domain was chosen as the focus of the SCAI project. Common abstractions of the
space domain are placed in the Application Layer. This Application Layer, shown as
the middle layer of Figure 3, contains classes such as Groundstations, Satellites, and
Observations, which are understandable to anybody familiar with the Space Domain.
The classes imbed algorithms for things like orbit determination, and contain data such
as orbits. Inheritance is used to identify system differences and commonalties in the
domain. Commonalties are identified in “parent” classes while differences are identitied

in “child” classes.

Air

Missions, Object Scenario Diagram s']
Scenario Services r

Event Layer
[T T 1 | |

Application Layer s Siusinn. } >
| [I B — I \ /
C2 Service Layer {Dmmtuniiaeytonmin.y >
\AR_T NN 4

Figure 3. Domain Requirements Model

5 January 15

3.1.4 DRM Event Layer

Both the C? Service Layer and the Application Layer act as servers to the Event
Layer. The Event Layer contains modified Booch Object Scenario Diagrams (OSD)s.
Each class in the application layer may be included in many OSDs in the Event Layer.
The OSDs act as a cross-check, to ensure that the classes defined in the application
layer contain sufficient operations to handle all system functional requirements. A
normal Booch OSD contains a single path through a system, tracing the flow of control,
as messages are passed from object to object, from one system boundary to the other.

The SCAI DRM Event Layer is different than a set of Booch OSDs. Each Object
Scenario Diagram (OSD), in the SCAI Event layer, traces a set of paths through the
system, with messages connecting all the objects necessary to accomplish a single
Space Mission. Space Mission examples are “Manually Determining an Orbit " or
handling a “Sateliite Reentry.” These missions would typically be identified in a concept
of operations document for a SWSC C? system, and would allow the Event Layer to be
meaningful to Space Mission Experts. Each OSD, or mission, identifies every object
needed by that mission. Each SCAI mission also relates to a meaningful, cohesive
subset of the functional requirements for a system.

Each object within the OSD will eventually be transformed into an Ada Package
or Generic Package, following SCAI coding rules. Therefore, each OSD also shows the
necessary software needed to construct the Mission as an Ada Program, “on top” of the
Service Layer run time services. Each SCAl OSD is a useful abstraction,
understandable to a user of Space Systems, and shows how to construct an Ada
Program to implement a SCAI Mission.

3.1.5 SCAI DRM versus other Domain Model Types

The DRM is a logical, machine-independent, representation of the common
objects in all systems in the domain. So, DRM is really a misnomer. It is NOT a model
of requirements, as one would never have included Services in a requirements model,
because a requirements model is typically a model identifying a problem to solve, and
not a design solution to that problem. Note also that the SCAI choice for a Domain
Model is a high level design, including dynamic behavior as specified in the OSDs. -
Typical domain models [Diaz81-1] contain only static domain information. SCAl
believes that a simple categorization scheme, embodied in a static model, does not
provide enough information to determine it the reusable components (one component
per class), can actually be used in the construction of the systems in the domain. The
OSDs show how the classes (components) are used, and demonstrates that the
components are sufficient to construct systems in the domain.

3.1.6 Reasons for DRM Layering

f the layering structure and rules for using the layers in the domain are
consistent across that domain, then the DRM can be built iteratively. The characteristic

6 January 15

layering structure chosen for the DRM should be applicable to the whole SWSC
domain.

The anticipated value of this layering is fourfold:

(1) The creation and isolation of a service layer allows the substitution of new,
superior services in the future, while minimizing the impact to Space
Application Layer Code. For instance, an object oriented data base could
be substituted for the existing relational data base.

(2) The Service Layer makes it easier to be compliant with DoD TAFIM.

(3) New or modified missions can easily be created by reusing existing
components in the Application Layer.

(4) The DRM layering scheme not only helps identify reuse opportunities, but
also identifies the type of expertise that can be localized in product-line
functional organizations, as explained in the following paragraphs.

Experts who understand the Missions in the SWSC domain need only
understand the Mission Layer of the Domain Requirements Model, and need not be
software engineers or system architects. These ‘mission domain experts can collaborate
to identify and abstract common missions across systems, and to project what new
missions will be needed in the future.

Experts who understand orbits, trajectories, and the mathematics behind these
topics, can be shared across appropriate SWSC supported missions, as part of a
functional domain organization supporting the Application Layer.

_ Experts who understand typical software engineering tasks like relational data
bases, or message parsing, can be considered as a pool available to all SWSC
missions. They conceptually belong to the Service Layer of the SWSC, and should be
responsible for upgrading and extending RICC services, or substituting services
equivalent to those provided by RICC.

3.2 SCAI RELATIONSHIP BETWEEN DOMAIN AND APPLICATION MODELS

SCA! literature refers to both Domain and Application Requirements Models
(DRMs and ARMs). Currently there is only a single DRM, which is being used to
construct the SCAI application. Referring to Figure 4, classes (and resultant Ada
Packages) are either specific to a single application or general to more than one
application. Differences between applications are captured using child classes.
Similarities between systems are captured using parent classes. OSDs in the Event

7 January 15

Layer are identified as either common to the whole domain or specific to a single (or
several) system(s). For example, the Manual Orbit Determination OSD is common to
Systems A, B, and C. It uses an Observation object which is also common to all three
systems. However, Manual Orbit Determination also uses a Sensor object, which has
different children for Systems A and B.

Domain OSDs

Domain
Common Requirements Model L .
Application DAF Application Architecture Models
Generic @~ || —————_—
Launch MISSlOn\ - /;MA/j /1:sk B
Template Use :
Computer C Computer A

Application OSDs :
Application B :

Map Launch Seenaric OSD to Task A
Map Manual Ombit Detection to Task B
Map Display Processing to Task C

Event Layer
Application Layer

b Sys_B Launch
'r Mission
Obs

Domain Classes . /Commﬁj'wm /[

Application Classes

Map Generic Launch Scenario OSD to Task A

Figure 4. Domain/Application Model Relationship

The reason that application-specific classes are currently kept in the DRM is that
when the next system is analyzed in the future, in order to extend the scope of the
domain mode!, what is now an application specific class may be abstracted into a new
class generic to several systems.

3.3 SCAI APPLICATION ARCHITECTURE MODEL

Referring to Figure 4, the Domain Requirements Model (DRM) is mapped into a
set of Application Architecture Models (AAM)s, one per system in the Space Domain.
Each AAM is comprised of:

J a UNAS network topology model

o a UNAS to Mission Mapping Table

A Universal Network Architecture System (UNAS) model [TRW84], also called a
Software Architecture Skeleton (SAS), is a network topology, comprised of tasks and

8 January 15

circuits. Circuits identify the paths across which messages flow between tasks, or units
of asynchronous work. The UNAS model also maps UNAS tasks to machines.

UNAS is also a run time service that generates a TCP/IP network, independent
of application code. The network model, and the run time services for the network, can
be generated interactively off-line. Various configurations of the network can also be
tested off-line, before application code has been generated, using “burn” statements
estimating the load that the application will generate on the computer(s). UNAS allows
architectural flexibility, because the same software components, consistent with the
DRM, can be associated with many different network and hardware configurations and
associated performance constraints. Also, software and physical architecture

development can proceed in parallel.

The Application Architecture Model is complete when the Ada Programs, related
to the Missions(OSDs), have been mapped to the UNAS Tasks.

DAF in Figure 4, stands for Domain Architecture Framework; the DAF defines
the processes which transform the DRM into application specific physical architectures.

4.0 SCAl ARCHITECTURE FRAMEWORK
4.1 |ITERATIVE SYSTEM DEVELOPMENT

A key lesson of the SCAI project is that both individual system models, and
domain models/architectures, need to be built up iteratively. The connectivity between
Ada Components in the DRM is the same as in the AAM; the AAM can be tested off-line
by “injecting” simulated messages into the AAM. Therefore, the validity of the DRM can
be tested using UNAS, and errors can be uncovered by executing the DRM before
coding has proceeded, at the time in the life-cycle when errors cost the least to correct.
Also, AAM development can proceed in parallel with Ada Package coding, compressing
the time that it takes to develop a system.

4.2 |ITERATIVE PROCESS DEVELOPMENT

Megaprogramming mandates the specification and the use of formal processes
for the development and maintenance of SCAI models/architectures. Further SCAI
experience has also shown the need to iteratively build up these processes and
validate them with experience, exactly as with the models/architecture. Several times,
as the architecture of the SCAI system has changed, the process has had to change,
and vice-versa.

4.3 DEFINITION OF ARCHITECTURE FRAMEWORK

This intimate, synergistic nature between process and architecture must be
extended to those other SCAI products: functional specifications, and Ada code, that

9 January 15

have relationships with the architecture, especially because of the iterative nature of
the development process. Expressing the relationship between process, architecture,
functional specifications, and code is done in the SCAI Architecture Framework. An

architecture framework extends domain architecture by:
J including the definition of system specifications and code

J including the processes which build the architecture and system
specifications and code

Though not discussed in this document, metrics are also included in the SCAI
Architecture Framework to evaluate the quality of the artifacts and architecture.

A SCAI goal was to base the architecture framework on processes with a
successful track record. The three major processes that were incorporated into the
SCAI Architecture Framework were: ‘

. Booch Object Oriented Analysis for DRM building [Booch93, Booch94]

o Cleanroom Software Development for Requirements Specification, Class
translation into Ada Code, and Statistical Testing. [Pal92A]

o TRW Ada Process Model for building the Application Architecture Models
and for translating the Service Layer generic services into an application
specific product. [Pal92B]

The mapping between the major domain artifacts, and the processes used to
build those artifacts, is shown in Figure 5. The mapping is shown to the level of each
layer in the architecture. Note that Figure 5 also identifies the fact that SCAI systems

have three different architectural views, one per column:
J A Functional View

J A Logical View (both dynamic and static logical relationships)

J - A Physical View

10 January 15

Specification Appl Reqt Model Appl Arch Model
s (Clean Room) {Booch) (Ada Process Model)
y [Functional] [Logical] [Physical]
S Commt 7§ask
N BB Z All OSDs i
m / \ of the System
E Z AN Map Launch to Task B
: Man DC Launch w M
A Ra— 11 ’@ Ada Process Mode!
System Engineering
A SAT [Constraints]
P
SAT Obs Sensor

: / N
! \

Kalman Filter @
S Ada Process Model
e

Space QP

: oy | v
i
=
e Message
s

Figure 5. Architecture Framework
System-level artifacts are identified by the top row in Figure 5:

J A system-level functional specification
. A system-level logical model
o A system-level physical mode

Each system level artifact is decomposed into the three layers (Event,
Application, and Services) that have been defined previously.

Implicitly, the domain-level logical model (DRM) can also be considered to
occupy the system-level logical model spot in the framework; this DRM extends the
scope of an individual system to the entire Space Domain, and contains the set of
OSD'’s for the entire Domain.

4.1 PROCESS FOR BUILDING THE LOGICAL MODEL

System and domain logical models are created, as previously stated, using
Booch Domain Analysis. The inputs to this analysis are: Business Process Models,

11 January 15

System Specification Documents, System Design Documents, System ICDs, System
Code, and System Operational Concepts Documents.

Roughly speaking, analysis involves proposing strawman generic models,
examining existing systems documentation and encoding this information as classes
within the models, identifying similarities and differences between the systems, and
refining the generic model to accommodate existing systems. Scenarios are used to
prove that the generic class models are correct.

4.1.1 Restrictions on SWSC Domain Analysis

At the SWSC, Space Systems that are restructured to conform to the
Architecture Framework must still satisfy their original requirements. In general, the
same inbound and outbound messages must be processed, and the same display
screens must interact with the system users via the same dialogues. Invoked Space
Algorithms must have the same accuracy. Therefore, once a good set of Application
Objects has been abstracted (grouping and abstracting needed Space Algorithms), the
validity of the abstractions is tested by creating object scenario diagrams in the event
layer that pass inbound and outbound messages exactly according to current systems
functional specifications.

4.1.2 Application Classes into Service Classes

As the Booch Analysis proceeds, common Application Classes are tested to see
it they might conform to rules that identify service classes. For instance, if two
applications (Space, Missile Warning) both contain alarm processing, then that
processing may be isolated in the Services Layer, at the discretion of Domain

Management.
4.1.3 Pattern Recognition

The Event layer invokes each Application “Server” that is needed to execute a
Mission. Common Services associated with all Missions in the Event Layer (such as
error processing) are encapsulated in new class utilities. Also, certain dynamic patterns
of use for every Mission have emerged. For instance, whenever a UNAS task is
initialized or terminated because a command associated with a Mission has started or
terminated, the same type of processing routine is invoked across every mission. To
uncover these common patterns of usage, a “pattern recognition” process is used in
this layer, which is not object oriented, as well as standard Booch Analysis.

12 January 15

4.1.3 Extending the Domain Incrementally

Every time a new system is incrementally added to the scope of the domain
analysis, each class and each mission are examined to see if they can be abstracted
with the new domain analysis input data. A variety of options for integrating the new
information into the DRM might occur:

J A new class might be added which is independent of existing classes.
This does not affect existing Missions.

o An existing class is identified as generalizable, but will not be
reabstracted because of thé cost of modifying existing systems. A
temporary” child class for the new system, tagged as belonging to the
new system, will be added to the existing class. The old class will also be
tagged as awaiting abstraction.

. An existing class will be modified. New Ada Code will be written for the
new class. Any Missions using the class will be retested.

4.1.4 Domain Management

Domain Engineering makes the technical decisions related to extending and
abstracting the DRM. An organization called Domain Management makes the
scheduling and cost decisions as to whether software should be generalized to reflect
these changes and whether the software should be updated and then retested in any or
all applications to which it is related.

4.2 PROCESS FOR SYSTEM SPECIFICATION

Cleanroom Software Engineering is used to create the Functional View of SCAI
Systems. Cleanroom is a formal method which provides a tightly integrated approach
from specification preparation through software development to software certification ,
bringing engineering rigor and intellectual control to the process [Mills86]. Intellectual
control is the ability to clearly understand and describe the problem at hand at the
desired level of abstraction. Cleanroom introduces the concept of statistical testing to
ensure the developed system meets the users requirements to any level of statistical
accuracy. System specifications are coded using Black boxes which explain how
stimulus histories are mapped into responses. Black Boxes are then decomposed into
State Boxes, which replace stimulus histories with internal state data. The Clear Boxes
are then decomposed into Clear Boxes which elaborate the functions that translate
stimuli into responses. The process iterates as Clear Boxes are decomposed into new
Black Box Subfunctions. This process is called Box Structured Decomposition.

SCAI System Specifications are built using the Cleanroom Software Engineering
Process. A system black box (BB) artifact is created, using both the DRM and the same
inputs (other than System Design and Code) as used by Domain Engineering. A
system BB contains all system stimulus histories (input messages with conditions under

13 January 15

which the message will be accepted), and corresponding system responses, as well as
functions which map these stimulus histories into the system responses.

4.3 PROCESS FOR FUNCTIONAL DECOMPOSITION

System BBs are decomposed, via Box Structured Decomposition, into a set of
BB subfunctions. Each BB subfunction must map directly into a mission in the DRM
Event Layer. Each input message processed by a BB subfunction must be identified in
the corresponding mission OSD.

Associated with each stimulus in each BB subfunction, is a probability of the
stimulus occurring. The probability is used to evolve a test plan for the
subfunction/mission/Ada program that will guarantee that the mission is accurate to any
degree of desired accuracy.

Missions are not decomposed using BB decomposition beyond the subfunction
level. The decomposition of a subfunction is accomplished using domain analysis, and
recorded within the logical model by identifying the classes that occur in the OSD for
the mission. BB decomposition cannot be used to identify these classes, because they
are generic to the domain, and may imbed methods that do not relate specifically to any
one subfunction; in other words, they are reusable across the Space Domain.

Once the Application Classes have been identified (Application Layer, Logical
Model), they are translated into Ada Packages using BB decomposition, in order to
guarantee the accuracy of the very complicated Space Algorithms. '

4.4 PROCESS FOR BUILDING A PHYSICAL MODEL

As explained previously, the Architecture Model contains UNAS Tasks imbedded
with Ada Programs representing Missions in the Event Layer. Application Layer
Classes identified in OSDs are included (in the form of Ada Packages) within these
Mission Ada Programs. The system level physical model is represented by the upper
right box in Figure 5. ‘

The Architecture Model is built using methodology defined in the Ada Process
Model, a systems engineering process specific to Command and Control Systems. The
TRW Ada Process Mode! [Royce89,90a,b;PAL92] is an iterative, demonstration-based,
code generator-based, development technique particular to Command and Control
Systems

Once basic system missions have been defined in the logical model, the BB
subfunctions have been defined in the functional specification, and performance
constraints have been identified for the system, Ada Process Model (APM) iteratively
builds proposed physical architectures, identifying flaws in each proposed architecture,
and then correcting those errors.

14 January 15

APM addresses typical system engineering concerns by performing ‘trade
studies” that balance cost against hardware and storage resources.

The generic Common Services identified in the Service Layer of the Functional
column of Figure 5, must be made system-specific. For instance, each display format
for the SCAI Application contains a command line, which must be parsed. Therefore, a
parsing service is added to display services for the SCAIl Application. All system-
specific services for a single application reside in the Service Layer under the Logical
Column. An encapsulating class is defined for each particularized service. The
encapsulated classes are used to reference these classes in the Logical Model Event
and Application Layers.

4.5 RELATED PROCESS PAPER

Note that the process for integrating the Logical, Physical, and Functional
development processes on the SCAI Project will be discussed in the paper “Product
Line Software Development” by David J. Bristow also under the Architecture Track at

STC.

5.0 LESSONS

The following lessons in Domain Engineering relate to both the creation of the
Architecture Framework, and its integrated processes, and to the execution of those
processes on the SCAI project. The lessons have been abstracted so that they have
broader scope than just to the SCAI project, or just to the Space Domain. These
lessons, among other SCAIl Project lessons, will be formally delivered in “AF/STARS
Demonstration Project Experience Report Version 2.0,” Contract No. F19628-93-C-
0129, CDRL Sequence A011-002D. _

51 LEssON: THE DE PROCESS MusST ALLOW FOR ITERATIVE DOMAIN
KNOWLEDGE ACQUISITION.

Product Line Software Development implies two software life cycles: one life
cycle developing generalized domain products and a parallel life cycle developing
individual applications which are constructed from the domain life cycle products.
Obviously, domain products must exist prior to their use on the application. Problems
associated with the prior construction of all domain components are:

o Great upfront DE costs not associated with developing any product. (As
DoD shrinks, these kind of costs are increasingly difficult to justify).

o Generalized Models and generalized components can only be validated
through their use on real systems. Even within a single system, a
reusable class must be validated in each of the contexts in which it is

15 January 15

used. Monolithic “water-fall” systems development has largely been
discredited vis-a-vis more iterative approaches to modeling and systems
development.

J A large domain, such as Command and Control, may contain very many
systems. In spite of the fact that all these systems have much in common,
it is unlikely that DE can be initially accomplished with the scope of every
one of these systems, before the need to deliver the first rearchitected
system occurs.

For the above reasons, the DE process must allow for the iterative acquisition of
domain knowledge. The SCAI Architecture Framework was constructed from processes
which are inherently iterative. Therefore, the overall process is iterative. As new
systems are analyzed, and the scope of the DRM is extended, more domain missions
are identified, new classes are created, and existing classes are generalized. Newly
generalized classes are reinserted into existing missions, and the missions are

retested.

The cost and time to perform the Domain Analysis (DA) of the Space Domain, on
the SCAI Project, was underestimated and the DA analysis is not currently complete.
However, the ability to continue to build generic software has not been halted, because
the DA process is iterative.

5.2 LESSON: INTERPRET THE STARS “Two-LIFECYCLE MODEL” AS A
SINGLE INTEGRATED DE/AE PROCESS.

The SCAI team has found it necessary to interpret the STARS “Two-Lifecycle
Model” to show the very close interaction between Domain Engineering and Application
Engineering, in order to constantly validate the domain models against real
applications in the domain. In the original STARS model, Figure 6, the parallel Domain
Engineering Lifecycle creates a domain design and domain implementation. These
generalized artifacts must be kept consistent with application specific systems designs
and systems implementations in the Application Life Cycle.

16 January 15

Existing (' Dorrain Engineering N\
System
Attifacts Domain Donwin Donmain
_ V
; ; Domain| Architectural Domain Reusable
mmm Model Components & Generators
/4
— \
Application| Engineering A
New System L Requirerrents _&> System A System New
, Analysis Design Implementation
Requirements System
J
\. J
. J

Figure 6. STARS Two Life-Cycle Model

To avoid serious configuration management problems, SCAI decided to maintain
a single logical model, the DRM, used by both the Domain and Application Lifecycles,
Figure 7. Applications would add detail to the model; The Domain Organization would
add new classes when extending the scope of the domain, and potentially generalize
existing classes within the previous scope of the domain. All system specifications and
system components would point to this single DRM. Component generation, both
generic to more than one system, and specific to a single system, would be assigned to
the- development Lifecycle of an existing Application. Testing for the generalized
components would then have to occur in each of the applications to which the
component applied. Test cases and infrastructure are maintained with each application,
so retesting within an existing application should be routine. Again, the cost decision to
actually reintegrate the generalized component within an existing application is a
decision of the Domain Management organization

17 January 15

m maﬁ 'sz _-;:3"':::;-:--
exsting systemartifacts
addoamentaion

Spdfy
SyemRdease| | Architecture

N

Figure 7. Modified Two Life-Cycle Model

5.3 LESSoN: THE DOMAIN ANALYSIS PROCESS SHOULD BE APPLICABLE
TO INDIVIDUAL APPLICATIONS.

Domain Analysis (DA) typically looks at multiple systems with the intent of
discovering the similarities and the differences between those systems. The overlap of
DA with Systems Analysis should be in identifying common abstractions across any
scope of analysis; common abstractions will result in common code components. If the
DA process is well-understood it should be applicable to a single system. When
applied to a non-perfect, single system, the result of DA should be a simpler, well-
structured, single system. Thus, even if an organization is initially unwilling to invest in
DA and generalized component development across the whole extent of the domain,
they may be willing to apply domain analysis to a single system, and still be able to
judge the economic and technical value of the DA process. That the DA process is not
affected by the scope of its application, is essential to doing incremental domain
analysis as specified in Paragraph 4.1. This does not change the central purpose of
domain analysis from identifying commonalties across multiple systems.

18 January 15

54 LESSON: USE VALIDATED TECHNOLOGIES FOR DOMAIN
ENGINEERING

SCAIl believes that Domain Specific Software Reuse may require dramatic
cultural change, but not sophisticated new technologies. It has been shown previously
that there is much overlap between Systems Engineering and Domain Engineering.
Domain Specific Reuse should be implemented using technologies that are intuitively
easy to understand, and have widespread use. Then, the cultural shock associated
with megaprogramming will not be reinforced by a technological learning curve.

For example, existing Object Oriented methods (for instance, Booch Analysis)
are sufficient for recording the results of DA. Superclasses, class categories, and
polymorphism intrinsically identify high level abstractions/system commonalties. Sub-
classes identify system differences. Classes provide ‘real world” abstractions that do
not require programming expertise to understand. At a high level of abstraction, a
Satellite Class is easier to understand than a set of functionally decomposed orbital
calculation algorithms. Satellite relationships to groundstations and orbits encoded ina
class diagram provide much more information that a simple hierarchical decomposition.

Originally, SCAI Domain Analysis was going to be performed using the
methodology of Ruben Prieto-Diaz [Diaz91-2]. Even though the methodology was very
promising, SCAI was unwilling to use it because it did not have the track record of the
more prosaic Object Oriented Methodology. However, key aspects of the methodology
were incorporated into Booch, such as the bi-directional mapping of low level system
abstractions to a high level architecture, and revisions.

SCAI Configuration management of domain and application artifacts has been
accomplished using standard tools such as Rational CMVC, and does not require the
use of a Software Reuse Library Mechanism. The Software Reuse Community
originally thought that the key to software reuse was making components available in a
Reuse Library Mechanism having sophisticated search mechanisms. However, SCAI
recognizes that the DRM is the key to understanding and finding all domain software
components.

55 LESSON: DOMAIN ANALYSIS SHOULD EXAMINE THE RELATIONSHIP
OF PEOPLE/ORGANIZATIONS TO SYSTEMS

A restriction to SCAI Domain Analysis is that SCAI rearchitected systems must
retain their existing external interfaces. SCAI DA stops at system boundaries. This
restriction seriously degrades the ability of the Domain Engineering Organization to
improve existing systems based on new technology. For example, in the Space
Domain, several systems involve the Orbit Analyst in a complicated dialogue across
multiple display screens in order to determine the orbit of a satellite that requires non-
routine calculations. The original reason for creating the dialogue, was that these non-
routine calculations require a great deal of compute power, and the human (Orbit

19 January 15

Analyst) was part of the loop to determine the situations in when the superior accuracy
of the nonroutine calculations was critical. As hardware becomes faster, the nonroutine
calculations can be performed every time, and the dialogue with the human can
disappear altogether.

Human roles and computer roles in the overall “business process” for an
organization need to be included in an accurate Domain Analysis. The SWSC currently
does Business Process Modeling, but this activity is not integrated with SCAl Domain
Engineering.

5.6 LEssoN: A DomAIN MoDEL MusT CONTAIN BEHAVIORAL
ABSTRACTIONS

SCAI requires that application functional specifications be kept consistent with
the DRM. If this consistency is maintained, then SCAI systems will satisfy their
functional requirements. Functional specifications show how system input messages
are mapped to system output messages. It must be shown that when the same
messages enter the DRM that a path exists through the DRM such that the same output
messages will be generated as in the functional specification. This need to trace
messages through the DRM requires that behavioral abstractions be included in the
DRM.

OSDs define complete paths between objects in the DRM, when associated with
State Transition Diagrams and Ada PDL to specify the logical conditions under which
messages may flow. State Transition Diagrams and Ada PDL may also have to be
associated with individual objects that have complicated behavior, to identify the logical
conditions under which messages will be passed out of the object.

When all paths through the DRM are maintained as part of the DRM, then it can
be considered “executable” and consistent with its requirements.

5.7 LESSON: DOMAIN ANALYSIS SHOULD PRODUCE THE SIMPLEST
REUSABLE SYSTEM.

Behavioral abstraction is also needed to evaluate the complexity of the DRM..
Static Domain Analysis of the functionality that a domain must contain is not enough to
ensure that reusable components can be combined into well-architected, simple to
understand systems. DA should identify components that will result in the simplest
possible reusable system within the context of the domain.

SCAI DA compares the complexity of the behavior encapsulated within classes
(class state transition diagrams) relative to the complexity of the interfaces defined
between those classes. Interfaces between classes are represented by OSDs as well
as the State Transition Diagrams associated with each OSD. If the OSD is very
complicated, requiring interfaces to many objects, then the mission represented by the
OSD is tightly coupled. In order to loosely couple the OSD, the class definitions will be

20 January 15

reformulated. Standard Object Oriented Metrics are used to evaluate the complexity of
the model.

5.8 LESSON: PROCESSES ARE REPLACEABLE IN AN ARCHITECTURE
FRAMEWORK

At least three different domain analysis processes have been used to abstract a
set of common services for Command and Control Systems. Ruben Prieto-Diaz applied
his Domain Analysis Process Model at Contel [Diaz91-2]. TRW Corporation applied an
internal DA method to identify the RICC Services used by SCAL. Loral Corporation also
used an internal method to abstract common services for its CCS-2000 Domain
Specific Architecture. In all three cases, the same set of services were identified.

Booch Analysis was chosen to elaborate the logical architecture. However, other
Object Oriented methods were examined during the SCAl preparation phase
(Rumbaugh, Shlaer-Mellor, and others), and, from the method selection analysis, other
methods also would have been good choices for decomposing the logical architecture.

Cleanroom Software Engineering was chosen to decompose the functional view
of SCAI systems, but a variety of structured analysis techniques could have been
substituted for Cleanroom.

The point is, that once an architecture framework has been defined for a domain,
a variety of processes can be used to develop the artifacts within different layers of the
Architecture Framework. The reason for choosing a particular process may simply be
that personnel are familiar with that process. '

5.9 LESSON: LAYER THE DOMAIN ARCHITECTURE TO INSULATE THE
DOMAIN FROM TECHNOLOGICAL CHANGE

When technological changes mandate system changes, systems should not
have to be redeveloped from scratch. Big DoD systems are currently migrating from
large mainframe computers to networked workstations. The cost of rearchitecting these
Command and Control systems is proving exorbitant. The next such technology
transition might be toward massively parallel computers.

Typically, a DRM would not contain a service layer, because activities such as
querying a relational data base, are not normally part of an abstract, problem-state
model. However, SCAI recognized that identifying common services, and placing them
in a layer of the DRM not only simplified the domain analysis process, but facilitated the
process of “encapsulating” these services. Once classes have been defined to
encapsulate these services, the cost of replacing these services with equivalent
services can be readily estimated, because all references to the services are
graphically clear in the Class Diagram of the DRM.

21 January 15

An obvious future service replacement to the SCAI architecture, would be to
replace the current relational data base with an object oriented data base, or to replace
UNAS with a CORBA compliant networking service.

Future SCAI Domain Engineering plans call for abstracting the current DRM
Event Layer into two layers: the current Event Layer plus a User Interface Layer. The
User Interface Layer would totally isolate dialogues between a system and its users, to
allow simple replacement of the Display service, and to identify common dialogues and
simplify the way users interact with SCAI systems.

5.10 LESSON: PrRobuUCT-LINE ORGANIZATIONS SHOULD BE
CONSTRUCTED ACCORDING TO THE ARCHITECTURE FRAMEWORK

Contractors and Air Force personnel on the SCAI project have been co-located
by subcontractor, and not by the process in the Architecture Framework that they are
performing. Communication and synergy are lost because it is sometimes difficult for
personnel executing the same process to “feed” off each others expertise.

Each Architecture Framework process requires a different set of skills and
knowledge to perform. For example, executing the Ada Process Model requires skills in
network architecture and systems engineering, while building a mission in the Event
Layer of the DRM requires an understanding of space operations.

Product-line personnel should be organized into functional organizations based
on the architecture and be co-located to facilitate information exchange, which would
also avoid duplication of the Software Engineering Environment (SEE) facilities.

Organizational structures that parallel the architecture framework, enhance the
communications needed to maximize reuse opportunities and deliver on the promised
Megaprogramming productivity increases. This organizational approach also avoids
duplication of effort. - ' ' '

The “other side of this coin” is that an architecture should be originally
developed for organizational reasons as well as technical reasons. The SCAIl Mission
layer of the DRM was created partially to ensure that space operators could understand
the domain without being forced to understand the mathematics of the Application layer
and the Software Engineering of the Services Layer.

5.11 LESSON: VALIDATION DATA IS ASSOCIATED WITH MiSsiONs, NOT
ReusABLE COMPONENTS

Cleanroom Software Engineering uses probabilities associated with the
likelihood of system stimuli occurring, and the “amount” of testing performed, to
determine the statistical likelihood that programs will fail. SCAI Stimuli are associated
with Missions. Therefore, validation data (test results, test cases, test data, etc.) relate
to Missions: no statistical accuracy is associated with any specific reusable component.

22 January 15

Reusable components are not unit tested. Therefore, no contention is made, or can be
made, about the validity of a reusable component outside the context of its use.

This is just another specific example of Domain Specific Reuse, where no
contention is made that a domain component is reusable outside of the domain context
identified by the domain model.

5.12 LESSON: BOTH FUNCTIONAL AND OBJECT ORIENTED MIND SETS
ARE REQUIRED TO BUILD A SPACE ARCHITECTURE FRAMEWORK

Space systems requirements are functionally stated; the technology to develop
software and test it to a specified degree of statistical accuracy is functional. Most
COTS and GOTS reusable software is functional. Therefore, for reuse in the present
day, it is necessary to provide a functional view of the Architecture.

However, Object Oriented Modeling, at least according the SCAI philosophy, is
the best way of decomposing a domain so that it can be understood, and is reusable.
However, one lack in Object Oriented Modeling, according to some technologists, is
that it is an informal modeling technique. Domains are not decomposed into precise,
verifiable units. Therefore, there is a concerted effort to combine formal methods with
Object Oriented Modeling, in order to add this precision. Cleanroom Software
Engineering imbeds semi-formal methods for software generation, and therefore,
remedies Object Oriented Modeling flaws.

5.13 LESSON: MEGAPROGRAMMING PROJECTS STILL NEED TO FOCUS ON
BAsic ENGINEERING AND PROJECT MANAGEMENT DISCIPLINES.

New technology is always viewed as a “silver bullet.” However, no technology
obviates the need for bright system engineering and management talent, and people
who understand the domain of the product line. In fact, as the technologies become
more sophisticated, the need to have talented people actually increases.

Although Megaprogramming brings to the table multiple concepts to improve the
production of software systems, it does not replace some of the basic engineering and
project management disciplines. -

Megaprogramming extends the scope of software development, requiring that
more and more people work together (though eliminating redundant personnel).
Establishing an efficient organization with cooperating domain and multiple application
organizations, all building software incrementally and cooperatively, is a formidable
management challenge.

Regardiess of how well defined domain components are, inserting those
components into an efficient network architecture still requires sophisticated systems
engineering talent.

23 January 15

5.14 LEssoN: DoMAIN ANALYSIS NEEDS TO BE SUPPORTED BY A
ProbucT LINE ORGANIZATION.

The SCA! project conducted domain analysis on the Space Domain which
included the SPADOC 4C data base. SPADOC 4C is a Space System, partially
deployed in Cheyenne Mountain, that was analyzed via SCAI domain analysis. A
number of redundancies were uncovered in this data base, which presumably was
constructed incrementally over the life of the SPADOC system. Due to the stovepipe
organizational structure and resulting differences in priorities, it has been difficult to
cooperate in this area (which could benefit both SCAI and SPADOC). We believe that
organizational structuring based on the product-line approach would enhance the
SWCS's ability to take advantage of Domain Analysis, increase the focus on
commonalties between systems, avoid reporting boundaries and facilitate information
sharing between current systems and new ones.

From the above small experience, deploying SCAl Megaprogramming
technologies, will be far harder than inventing the SCAI Megaprogramming
technologies in the first place.

5.15 LESSON: PATTERN RECOGNITION WORKED FOR THE SCAI PROJECT.

It was presumed that reuse would occur in the Application Layer of the DRM as
multiple missions in the Event Layer used the same Application Layer Classes. In fact,
as missions were developed, not only was it found that as each mission was
elaborated, the same common services were required to support the mission, but also
that the services were applied in the same order. Thus, a whole set of reusable
services were created, and were encapsulated in Class Categories called Event
Control and Event Common. This type of discovery of reuse opportunities (through
order of class invocation) is an example of a new theory of architectural reuse referred
to in the literature as “Pattern Recognition.”

5.16 LESSON: CRITICAL PATHS OF THE PHYSICAL ARCHITECTURE MusT
BE ITERATIVELY TESTED.

The Ada Process Model, incorporated into the AE/DE process, demands that a
system, including its architecture, be iteratively built and tested. For example, the
original SCAI Domain Architecture did not distribute the human-machine interface
module to each workstation, creating too much message traffic on the network. This
overload condition was identified because UNAS allowed for architectural testing
before any significant application code had been written. This enabled the architect to
correct the architecture without impact to the schedule. This is a specific example of the
general need to iteratively develop and test the physical architecture.

24 January 15

5.17 LESSON: ADA CoDE GENERATORS CREATED SIGNIFICANT AMOUNTS
OF REUSABLE CODE.

Ada Code Generation, such as that provided by the Reusable Integrated
Command Center (RICC) Tool set, has greatly decreased SCAI code development
time. RICC infrastructure provided reuse across the entire space domain including user
interface generation, message parsing/assembly, network control, and data base
support. RICC was used to help elaborate user interfaces rapidly and gain customer
acceptance. RICC provided 52% of the SCAl Release 1 code (19% reused, 33%

generated).

5.19 LESSON: MEGAPROGRAMMERS MusT UNDERSTAND PROCESS
DEFINITION

Megaprogrammers not only need skills in software development, but also in
process definition and improvement. Process definition must be recorded by those who
will use it, so that they will enthusiastically accept the process, identify inefficiencies in
it, and identify needed process improvements. On the SCAI Project, when software
development organizations did not record the processes they used, they felt free to
ignore those processes.

6.0 SUMMARY

The SCAI Project focuses on how standard, proven software engineering
technologies can be used for Domain Engineering, not on the need for unique new
technologies. '

SCA! emphasizes that Software Process and Software Architecture are
intimately related, using the Architecture Framework to show the relationships.

SCAI recasts Domain Engin'eering as an incremental process that is tightly
coupled with Application Engineering. Incremental applies to both the elaboration of the
architecture and the elaboration of the process that builds the architecture.

Finally, SCAl emphasizes that Product Line Organizations are required to
implement Megaprogramming and that these organizations should conform to the
architecture used to subdivide the Domain.

25 January 15

[Booch94]

[Bristow93]

[DemExp95]

[IBMS3a]

[IBMO3b]

[IBM93c]
[1BM93d]
[IBM93¢]
[IBM93]
[Mills86]
[PAL92a]
[PAL92b]
[Diaz91-1]
{Diaz91-2]
[Royce8]
[Royce90a]

[Royce90b]

REFERENCES
Booch G., Object-Oriented Analysis and Design, 2nd Edition, Benjamin
Cummings, 1994
Bristow D.J. (Lt.Col. CF), Space Command and Control Architectural
Infrastructure (SCAI) Air Force/STARS Demonstration Project Management
Plan. Appendix B RICC, Version 2.0, 15 Oct 93

AF, Loral, AF/STARS Demonstration Project Experience Report, Version 2.0
(Draft), CDRL A011-002D, December 1994 (currently under Government review)

IBM, STARS Program Cleanroom Engineering Handbook Volume 1
Cleanroom Engineering Process Introduction and Overview, 31 Jul 83,
STARS-05507-001A

IBM, STARS Program Cleanroom Engineering Handbook Volume 2
Organization and Project Formation in the Cleanroom Environment, 31 Jul
93, STARS-05507-001B

IBM, STARS Program Cleanroom Engineering Handbook Volume 3 Project
Execution in the Cleanroom Environment, 31 Jul 93, STARS-05507-001C

IBM, STARS Program Cleanroom Engineering Handbook Volume 4
Specification Team Practices, 31 Jul 93, STARS-05507-001 D

IBM, STARS Program Cleanroom Engineering Handbook Volume 4
Development Team Practices, 31 Jul 93, STARS-05507-001E

IBM, STARS Program Cleanroom Engineering Handbook Volume 4
Certification Team Practices, 31 Jul 93, STARS-05507-001F

Mills H.D., Linger R.C., Hevner A.R., Principles of Information Systems
Analysis and Design, Academic Press, 1986

Armold P.G. Cleanroom Engineering Process, STARS/SEl Process Asset
Library, 1 Oct 92

Pixton J. Maymir-Ducharme F. The TRW Ada Process Model, STARS/SEI
Process Asset Library, 16 Oct 82 .
Prieto-Diaz, Ruben, Reuse Library Process Model, Loral FS CDRL # 0341-002,
07-26-91

Prieto-Diaz Ruben, Arrango Guillermo, Domain Analysis and Software Systems
Modeling, IEEE computer Society Press, 1991

Royce W. Ada Process Model, TRW SEDD Guidebook, 5 Oct 89, SEDD SGB-
01-10-89-A

Royce W., TRW’s Ada Process Model for Incremental Development of Large
Software Systems, TRW Technologies Series, Jan 1990, TRW-TS-90-01

Royce W., TRW’s Ada Process Model for Incremental Development of Large

Software Systems, Proceedings of the 12th International Conference on
Software Engineering, Nice France, 26-30 March 1990

26 January 15

1 -1eIng ueng 66 Ilidy 90UaI2ju0D OIS

pooloag

UOYDLISUOWI (]
SUVLS /2210 A1}
g uvleg
ST Y- 20U AXT] SULIIIUIGUT] ...ﬁ\M-D...
".’ \\‘ :.NﬁsQQ D%\m\—% |

¢ —1g|ng uelg

66 ludy @0UaIaju0d O1S

SUOISN|OUO0Y) «
poauJea suossa buovauibug urewoq .

}JOMaWEIL] 81N}00}IY2IY [VOS —
91Nn}2931Yy24y ulewoq |YOS —
Buiwweiboideba|y SHYIS —

- aunjoayyauy diyd D01y -
JusWwUodIAUT DOSMS —
Ixajuon Buldauibug urewoq »

swaysks [esapag

MI14.4124() e\ S[a

¢ —leing ueug 66 11dY 90UaJ8JU0D OLS

uswabeuew uonjeinbiyuos pue Bursaulbus
alemljos Buiuiem pue aseds SOPINOIH e

‘Swo)sAs
|0J3U09 9oeds pue Huluiem yoejje jeuoljeu Jo
f1uBs3ul [es1uyoa} pue jeuoijelado sy} sainsuz .

"S.19}Ud9 |041U0D puk puewwiod

INODIADVdSHV pue NODIIVdSSN ‘AVHON 104
sjuswalinbai jeuonjelado }@aw Yyo1ym alemyos

913119 uoissiw suoljesado jequod syoddng e

swid)sAs jesapad

UOISSITAT DSMS vwvaon

v —1ejng veug §6 |dy 90UBJRJU0D OLS

buijpuey E e
mmo_tmw&ww\ﬂw

syudwruoaiAug 310ddng aaemyjog xodwo)) «
sjusuoduwion) aaemyJos 2 daempael A1e)dridoa .

Apo)) Jo s3Ul] 000°000°CT
SISENGUeY LT o

SwISAQ [euonedd(jeaedog ¢ .

swiaysAs jelapay

wajqoid HSMS wvaon

§ —iEjng uelg

O0Id »
SVNN -

$]00]
lojeloue

apod

9S0Y jeuoljey »
xady jeuoney .

66 |dy 82u8Jaju0d O1S

MH S10D

MS S109D uendwod WYL/ WIdVL

2iNjoNJiseqju] |einjoajiyoly |0Jju0) @ puewwod

SIAIRS SIIIAIG
JdejaR)uY J3s() | JuswdSuuRy BIE(

G]
\h_w._; oy

SNAIG
SurjpuB 93BSSIA]

CERIENEIN
wR)SAS

Buiuiepp
slissIN

swidysAs jesapay

[POD [PAmpRMYOIY) IPHIU] TNVE0N

9 —le|ng ueug 66 |udy 90UBIajuo) D1S

VAR S e
T L T N

swa)shs jesapay

SurauIsus wwwiod vy /a0

L —le|ng ueugd G6 |Udy 80UB1IBJU0D D1 S

JUDWIUOJIAUS SULIAUISUH IBMJOS

[[f

\\\ N
SWIISAS
@328 QIN)OANIYIIY
$S900.1J pajewiony owﬁoomm
Z:cm q - urewo(q
L /

SSNAY ®.ﬂw>> Om AUI"T 190npotd

swiaysks jesapaq

SUIMUDL301dD S] g\v/3[=]p

8 —lejng ueng 66 Ilidy 92UBIBJU0D O LS

- A

A A
stsATeuy sjuswarmbayy

uonejuaurajdury udrsa(y
MIN wa)sAg ﬂ wa)sAg -A sjuaurarmbay) wa)sAg MaN

ff Suuesui8uy |voneoryddy \
_/

wa)sAg

IPPOIA [°PON

siojenaUad 2 susuoduios sjuauraiinbay urewo(y

ajqesnay urewro(g TernydajIyIIy [uteurodi

\ ._ N

/ uonejudwaydury v ugrsa(g ¢ \ sisA[euy <

urewro(] urewo(]

urewo(g s)ORJNIY
wd)shg
/ Suneaurduy EmEoQ Sunsixy
f juawadeue N urewiod

swiayshs jesapay

[oPOI] 2124D)-2/1T oM SYVLS /0N

6 —lejng uelg 66 |udy 8duaiajucd O1S

Asmmmwmﬁmm“ ”“M,_wmﬂ_u_mm,v 1ohe 90I1M8S ;D
/ _ "
Awsg_smz _o%_ug_s_v 1oAeT uoneolddy

‘sasse|) a|gesnay

_ _

S90IMI9S o_hm:mowv

sweabelq oueuasg 309[qQ ‘suoissiy

S\

SWwidYsAS jelapay

12PO Spuduiaambay wuioq /A0

01 —1ejng uelg g6 [Udy adualsjuod O1S

V 3Se] 0} QSO CLBUa2S YouneT ouauag depy

....................................

seindwiod 21buis O uogedyddy sasse|) uoneoddy

a a -~ || ’ ‘ R Tt ARt

sqo

7 ¥se| o} Buissaoold Aeidsiq depyy
g %seL o] uoloaaQ ¥qIO jenuep dey
v ¥SB1 0} QSO oMeuass youne depy

Jake uoyeolddy

JakeiusAg
UOISSIA _
younei g sAg .
S@sO uonealddy
o R

asM ajejdwa] |,
/

UOISSIIAl 1IGUO [BNUBIN

UoISSIN Yyoune
2118U85)

S|9pOINl 24Nn308)Yyaly uonesiddy 4vd uopjeodljddy
|[opOIN Sjuawalinbay uowIwo9
. ulewoq

swiaysAs [esap

21122114} UIDUO(] 2\, =}

11 —lejng ueug - 66 |dy @0uU81ajucd Q1S

. S

9

=— !

] A

L 9w @ ﬁ ;

9

s

Ja)|l4 uewiey

|

d

Josuasg sqO 1vs @ g /’/y\ d

[sjuiesysuo9)] 1vs v
Buneauibug waysAg OIS TE .
|[o9POJN SS920.1d epy @ u
E g youne?] oquew| | 2

g jsel o} youne depy N \ 3
/ \ w

wa)sAg ayy Jo o

saso IV N ad)

S
[leaisAyd] [1eo1601] [leuonouny] m

(lepoy ss@204d epy) (yooog) (wooy uea}d)
[opoiy Yoy |ddy [opoly 1bay |ddy uojjednyoadg

V\ A0 MIUID A rm« swajsAs [eapag
g\ =}
2ANIIIYILY UIDU O \

ma :w:maxm

m:...mm:_mcm

urewoq owz,m

SW)SAS jeiapa4

PoUIDI] SUOSSAT g\ [=n

¢l —1lejng ueug G6 |Udy 9oualajuod J1S

3v/3a aidnod ApybiL

urewo(zo abae Msp

3Q 10} pijeAu] 8]9AD-9}1| ||BJS}EM

s)s09 3 Juoadn

swa)sAg
aoedg OSMS

swalshg
Buiulepp alissin

yoedisqy Ajaanjeas))

.

puaix3g AjoAnetsy]

swdysAs jesapaq

SULIIUISUS] UIDIO(] 24VL9]] T/I0N

1 —lejng uellg G6 |dy 9oualsju0d O1S

ainoaaliyoly aseaaypuR)sAg
aulay Kpedg

ases|oy dojpaaQ

¢ 9sea|ay

21N108)YdIY aseaja Y Wv}sAS
aulay Aloadg

asea|ay dojanag

Z osesjay

aInjoe)yos ases|d] m>J
asesjay dojeas M::MM v »twm\.ﬁ%wg S .
| asea|ay &

eoedg -y |ddy-1d
alssiN-g ddv-1d |
ay -9 ddy-1d ;

UOo1RIUBWINDOP pUB
ajowold syoejile waisks Bujisixa

jellaey Bunsix3
sishleuy

sisAjeuy
ulrewo(

swa)sks [eapay

12POJ] 2124021 T-0M [parfipoly /IO

S1 —jeing ueug 66 |Mdy 90UaI8JU0D O1S

S9|NPaYIg/S}s0)
Juswialbeue|y urewo(e

sjuauodwon syso | /spjing JV -

| - sw¥j|qoid
juswiabeue uoneinbyjuo? «

INNQA uowiwoy

swdysAs jesapay

AV/Ad pa43apu] g\"(=R

91 —lejhg uelg . 66 |dy @dualajuod 018

ainjoaliyale
Buluap uaym sqor/ojdoad 19pisuo) «

S]109}1Y24y WO)SAQ --------mmmmnn-- NVY o
s1oouibug welsAg ---------- SOJIAIOG o
si99ulbug |eonneuoJisy ----suoljedljddy .

slladx3 uoissi|y 9oedg -------- SUOISSI|N

IAN)IIJIYILY SOTULLJA] suijshs fesopa
UOND2ZIUDSA() dUl] JONPOLJ wvao

L1 —ielng ueug 66 |udy 9oUaI8ju0d O1S

ejeq uoljepljeA posN e
swa)sAg a|qesnay }sajdwig ajeal) e

sjusuodwon ajgqesnay wo.y
Pa1oNJI}suon aq ued swalsAg anoud

solweulq walsAg puelsiapuf .

swiaysAs jesapad

SOLIDUIIS PIIN] Va0

81 - lejng ueug g6 |udy @0UaIaju0D O1S

s19Ae] 996l 9lu]
los /oyeledag sanbojeiq dody «

onbojeliq
uoljeuiwialaq 31qiQ Jo sjdwexy .

SUOI}o11}SaY
sisAjeuy urewoq |VOS -

SISt Sv
]]12M SD %QQ.NNQN.::SMRQ wN«QQQV\ mA\v{=[=R

61 —ieing ueld 66 judy 90UBI8JU0D D1S

abueyo |ea1Bojouy291/S109/SLOD
suolnedijioadg urewog/walsAg—

uoleslia A pue Spoylan jewao]—
| [euonound .

asnay—
Buipuejsiapun urewoq-—

pajualQ 309[qQ -

M.NN%EQ.N g ENN N\\N.Nk swia)sAs [esapay
10210 puv [PUOIUN,] PIIN] g\{-I=R

IVOS

SAV.ILSHV

AN

66 udy 90UB18JU0D DLS

NN

0T —iejhg ueugd

VAR SR S

dIHSAANMO
ANIT-1DNA0dd

4

SNOLLYTNOTA
JADITOd NOLLISINODV

% SN

TYNOLLV ZINV YO

SwaysAs [esapay

1\wvaan

UOND2IUDSA() UIDUO(] PIIN]

1T —leling ueug 66 |lidy @0U8I3ju0D OLS

91Nn}28}1Yya4y 8y} JIWI\ p|noys pue
Kl1sso29N e aJde suoljeziueblQ aul] }onpoldd e

Burieaulbug uonesijddy yum psjdnod
Anybi] pue aAneld}| st bulieauibuz ulrewoq o

poaje|oy Ajojewlju] aJqe
91N3}29}IY21y 91eM]}JOS pue SS820.1d S1BM}JOS o

3q 10} mm_mo_o::oo._. Bulieauibug
91eM}JOS pJiepue}s 9sn :Sn204 |[VOS -

swid)sAs jesapay

A4puin g g\ (=}

